SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF NOVEL 2-METHYL-1-OXACEPHALOSPORINS

Tsuneo Okonogi, Seij Shibahara, Yasushi Murai, Takashi Yoshida, Shigeharu Inouye, Shinichi Kondo ${ }^{\dagger}$ and Burton G. Christensen ${ }^{\dagger \dagger}$
Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222, Japan
${ }^{\dagger}$ Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan
${ }^{4}$ Merck Sharp \& Dohme Research Laboratories, Rahway, New Jersey 07065, U.S.A. (Received for publication December 18, 1989)

Abstract

New 2-methyl-1-oxacephem compounds having 2-(2-aminothiazol-4-yl)-2-(alkoxyimino)acetamido substituents at $\mathrm{C}-7$ and various $\mathrm{C}-3$ side chains were synthesized starting from ($3 R, 4 S$)-phenyloxazolinoazetidinone (8). Introduction of the 2β-methyl group into the 1 -oxacephem nucleus increased the stability to β-lactamases. OCP-9-176 (7b) having the (1-methylpyridinium-4yl)thiomethyl group at $\mathrm{C}-3$ showed potent antibacterial activity and a broad spectrum.

In 1974, Cama and Christensen were successful in the synthesis of (\pm)-1-oxacephalothin ${ }^{11}$ possessing comparable antibacterial activity with that of cephalothin, and $(\pm)-1$-oxacefamandole ${ }^{2)}$ was more active than the natural 1 -thia counterpart. Since these findings, 1 -oxacephem ${ }^{\dagger \dagger \dagger}$ derivatives have been extensively studied by many research groups. Shionogi scientists synthesized a β-lactamase-stable analog, latamoxef by introduction of the 7α-methoxy group. ${ }^{3,4)}$ Fujisawa scientists ${ }^{5)}$ reported that the 2α-methyl analog of ceftizoxime (CZX) was more active than the 2β-methyl enantiomer, but less active than CZX. On the other hand, the 2β-methyl analog of cefmenoxime (CMX) having (1-methyl-1 H -tetrazol-5-yl)thiomethyl substituent at $\mathrm{C}-3$ was somewhat more active than the 2α-methyl analog. ${ }^{6)}$

To examine the effect of the 2 -methyl group of 1 -oxacephems against β-lactamase-producing strains, we synthesized several 2α-methyl- and 2β-methyl- 1 -oxacephem compounds. Among these compounds, a 2β-methyl analog, $(6 R, 7 S)-7-[(Z)$-2-(2-aminothiazol-4-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-2(S)-methyl-3-[(1-methylpyridinium-4-yl)thiomethyl]-1-oxacephem-4-carboxylate (OCP-9-176 and L-656,575) showed potent antibacterial activity with a broad spectrum, ${ }^{7}$ and was selected for further biological evaluation. ${ }^{8,9)}$ In this paper, the synthesis of 2 -methyl-1-oxacephem derivatives and their antibacterial activities are reported.

Chemistry

New 2α-methyl- and 2β-methyl-1-oxacephem compounds (series a and \mathbf{b}) having 2 -(2 -aminothiazol4 -yl)-2-(alkoxyimino)acetamido substituents at $\mathrm{C}-7$ and various $\mathrm{C}-3$ side chains (compounds $1 \sim 7$, Fig. 1) were synthesized starting from ($3 R, 4 S$)-phenyloxazolinoazetidinone ${ }^{10}$ (8) through a useful keyintermediate, 3-hydroxy-2-methyl-1-oxacephem $15 .{ }^{11)}$

Compound $\mathbf{8}$ derived from 6 -aminopenicillanic acid ${ }^{10)}$ was reacted with neat chiral alcohols 9 a and

[^0]Fig. 1. 2-Methyl-1-oxacephalosporins and their 2-non-methyl congeners.

	R_{1}	R_{2}	R_{3}	R_{4}
1a	H	CH_{3}	CH_{3}	
1b	CH_{3}	H	CH_{3}	H
1c	H	H	CH_{3}	
2a	H	CH_{3}	CH_{3}	
2 b	CH_{3}	H	CH_{3}	OCH_{3}
2 c	H	H	CH_{3}	
3a	H	CH_{3}	CH_{3}	N-N
3b	CH_{3}	H	CH_{3}	$\mathrm{CH}_{2} \mathrm{~S}$
3 c	H	H	CH_{3}	CH_{3}
4b	CH_{3}	H	CH_{3}	$\mathrm{H}_{3} \mathrm{C}_{\sim}-\mathrm{N}$
4 c	H	H	CH_{3}	
5b	CH_{3}	H	CH_{3}	
5 c	H	H	CH_{3}	
6 b	CH_{3}	H	$\mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{H}_{2} \mathrm{~S} / \mathrm{N}^{+}-\mathrm{CH}_{3}$
6 c	H	H	$\mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{CH}_{2} \longrightarrow \mathrm{~N}-\mathrm{CH}_{3}$
7b	CH_{3}	H	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$	
7 c	H	H	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$	

9b to give $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$, respectively. ${ }^{12)}$ Alkaline hydrolysis of $\mathbf{1 0}$, followed by cleavage ${ }^{13)}$ of the substituent on the azetidinone nitrogen of 11 gave 12 . The reaction ${ }^{14)}$ of 12 with diphenylmethylmagnesium malonate, followed by diazotransfer reaction ${ }^{15)}$ of 13 with p-carboxybenzenesulfonyl azide yielded 14. Cyclization via the intramolecular carbene insertion reaction ${ }^{15)}$ of 14 with a catalytic amount of rhodium (II) acetate gave unstable key-intermediate 15 (b: 6.7% yield from $\mathbf{8 b}$), which was treated with diazomethane to obtain stable 3-methoxyl 18. Reduction of 15 with tetrabutylammonium borohydride gave 16, which was treated with methanesulfonyl chloride to yield 17 (Scheme 1).

Treatment of $\mathbf{1 5 a}$ and 15b with allyl (triphenylphosphoranylidene)acetate, followed by 1,5-diazabicyclo[4.3.0]non-5-ene gave 19a and 19b, respectively. After removal of allyl ester, 20a and 20b were treated with 3 -chloroperbenzoic acid to yield 21a and 21b (53% yield from 15b), which were converted into 3-exomethylene 22a and 22b (64%) by reductive cleavage, together with 2,3-dimethyl 23a and 23b (18%), respectively (Scheme 2).

Deacylation of $\mathbf{2 2 b}$ with phosphorous pentachloride, followed by epimerization of the 7 -amino group of 24b by the use of 3,5-di-tert-butyl-4-hydroxybenzaldehyde ${ }^{16)}$ gave $\mathbf{2 7 b}$ ($\mathbf{4 3} \%$ yield) through $\mathbf{2 5 b}$ and $\mathbf{2 6 b}$. After N-formylation of $\mathbf{2 7 b}$, treatment of $\mathbf{2 8 b}$ with phenylselenyl chloride gave $\mathbf{2 9 b}$. The N-protecting group was then removed to give $\mathbf{3 0 b}$ (62% yield). After acylation of 30 b with (Z)-2-(2-tritylaminothiazol-$4-y l)-2$-(methoxyimino)acetic acid, -2-[(diphenylmethoxycarbonyl)methoxyimino]acetic acid and -2-[1-methyl-1-(diphenylmethoxycarbonyl)ethoxyimino]acetic acid, treatments with 5,6-dihydroxy-2-methyl-1,2,4-triazine-3-thione and 1-methylpyrid-4-thione, followed by deprotection ${ }^{17}$) gave $\mathbf{4 b}, \mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 b}$ ($\mathbf{7 b}$:

Scheme 1.

Scheme 2.

19a, 19b
20a, 20b

50% yield), respectively (Scheme 3).
For the direct synthesis of 3-substituted 2-methyl-1-oxacephems, ${ }^{18)} \mathbf{3 6 a}$ and $\mathbf{3 6 b}$ (b: 26% yield) were prepared from $10 a$ and $10 b$, respectively, through $31 \sim 35$, according to a known sequence. ${ }^{19)}$ Cyclization of $\mathbf{3 6 a}$ and $\mathbf{3 6 b}$ in toluene in the presence of hydroquinone gave $\mathbf{3 8 a}$ and $\mathbf{3 8 b}$ (84 and 81% yields), respectively. Epimerization of the 7 -amino group of $\mathbf{3 8 a}$ and $\mathbf{3 8 b}$, followed by acylation of $\mathbf{4 0 a}$ and $\mathbf{4 0 b}$ with (Z)-2-(2-aminothiazol-4-yl)-2-(methoxyimino) acetic acid yielded 3a and 3b (24 and 16\% yields), respectively (Scheme 4). Compound $\mathbf{3 7 a}$ derived from $\mathbf{3 5 a}$ by treatment with hydrochloric acid was easily

Scheme 3.

24b

25b

Scheme 4.
$10 \mathrm{a}, 10 \mathrm{~b} \longrightarrow$

$.40 a, 40 b$
36a, 36b

38a, 38b

(37a, 37b $R=C l)$
(39a, 39b $\quad R=C l)$

Scheme 5.
$17 a, 17 b$ or $18 a, 18 b \longrightarrow$

$1 a, 1 b$ or $2 a, 2 b$

41a, 41b $\mathrm{R}=\mathrm{H}$
42a, 42b $\quad \mathrm{R}=\mathrm{OCH}_{3}$

Table 1. Antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$).

Test organism	1a	1b	1c	2 a	2 b	2 c	3a	3b	3 c	CMX
Staphylococcus aureus FDA 209P JC-1	6.25	3.13	3.13	25	25	12.5	0.39	0.10	0.20	0.20
S. aureus $606^{\text {a }}$	25	6.25	12.5	50	50	50	1.56	0.39	0.78	0.78
S. epidermidis ATCC 14990	3.13	1.56	1.56	12.5	12.5	12.5	1.56	0.20	0.39	0.39
Bacillus subtilis ATCC 6633	12.5	6.25	12.5	25	12.5	12.5	0.78	0.20	0.39	12.5
Escherichia coli NIHJ JC-2	0.20	1.56	0.10	3.13	12.5	1.56	0.39	0.39	0.10	0.10
E. coli W3630 RGN14 ${ }^{\text {a }}$	0.39	3.13	0.39	6.25	12.5	3.13	0.78	0.78	1.56	0.10
E. coli $255^{\text {b }}$	50	>100	50	>100	>100	>100	6.25	6.25	3.13	0.78
Klebsiella pneumoniae $\text { PCI } 602$	0.10	0.39	0.05	0.78	6.25	0.39	0.39	0.78	0.10	0.10
Proteus vulgaris GN76 ${ }^{\text {b }}$	0.20	0.20	0.10	1.56	1.56	50	0.39	0.39	0.20	0.10
Morganella morganii 1510^{b}	100	>100	100	>100	>100	>100	25	12.5	6.25	1.56
Citrobacter freundii GN346 ${ }^{\text {b }}$	>100	>100	100	>100	>100	>100	100	25	25	12.5
Enterobacter cloacae G-0005 ${ }^{\text {b }}$	0.78	6.25	0.78	6.25	50	12.5	1.56	1.56	3.13	0.39
Serratia marcescens GN629 ${ }^{\text {b }}$	6.25	25	3.13	25	50	12.5	0.78	0.78	0.39	0.10
Pseudomonas aeruginosa M-0148 ${ }^{\text {a }}$	>100	>100	>100	>100	> 100	>100	> 100	25	50	12.5
P. aeruginosa IAM-1007	>100	>100	> 100	>100	>100	>100	>100	50	100	100

cyclized to 39a, but 39b was obtained from 37b in a poor yield, together with a 7 -membered ring compound. ${ }^{20}$

On the other hand, 38b was converted into $\mathbf{2 2 b}$ in 92% yield. Therefore, this route is also useful as an alternative synthesis of 2-methyl-1-oxacephem compounds.

Compounds $\mathbf{1}$ or $\mathbf{2}$ were synthesized from $\mathbf{1 7}$ or $\mathbf{1 8}$ through $\mathbf{4 1}$ or $\mathbf{4 2}$ by the method described above (Scheme 5).

The 2-non-methyl congeners (series \mathbf{c}) were synthesized in a similar manner to the synthesis of 2 -methyl-1-oxacephems. Compound $\mathbf{1 c}$ is a known compound. ${ }^{21)}$

Antibacterial Activity

Activities of several 2-methyl-1-oxacephem compounds were compared with those of the 2-non-methyl and the natural 1-thia counterparts, as shown in Table 1.

Among 2-methyl-3-nor-1-oxacephem compounds having a (Z)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamide substituent at $\mathrm{C}-7$, the 2α-methyl analogs (1a and 2a) were more active against Gram-negative bacteria than 2β-methyl enantiomers ($\mathbf{1 b}$ and $\mathbf{2 b}$), but slightly less than 2 -non-methyl analogs ${ }^{21)}$ ($\mathbf{1 c}$ and $\mathbf{2 c}$), as similar to CZX analogs. ${ }^{5}$) In the case of compounds having 3-(1-methyl$1 H$-tetrazol- 5 -yl)thiomethyl substituent, the 2α-methyl analog (3a) was less active than 2β-methyl enantiomer ($\mathbf{3 b}$), 2-non-methyl analog (3c) and CMX. Compound $\mathbf{4 b}$ showed a similar or slightly less activity, compared to ceftriaxone (CTRX).

All compounds (5,6 and 7) having a (1-methylpyridinium-4-yl)thiomethyl group at C-3 showed

Table 1. (Continued)

Test organism	$\mathbf{4 b}$	$\mathbf{4 c}$	CTRX	$\mathbf{5 b}$	$\mathbf{5 c}$	$\mathbf{6 b}$	$\mathbf{6 c}$	$\mathbf{7 b}$	$\mathbf{7 c}$	CAZ
Staphylococcus aureus FDA 209P JC-1	0.78	0.78	0.39	0.10	0.10	0.78	1.56	1.56	1.56	3.13
S. aureus $606^{\mathbf{a}}$	1.56	3.13	0.78	0.20	0.78	1.56	3.13	3.13	3.13	6.25
S. epidermidis ATCC 14990	0.20	0.78	0.39	0.10	0.20	0.78	1.56	0.78	1.56	3.13
Bacillus subtilis ATCC 6633	0.20	0.78	0.20	0.10	0.39	1.56	6.25	1.56	6.25	3.13
Escherichia coli NIHJ JC-2	0.10	0.10	0.10	0.05	<0.025	<0.025	<0.025	0.20	0.10	0.20
E. coli W3630 RGN14	0.20	1.56	0.10	0.20	0.10	0.20	0.05	0.39	0.10	0.20
E. coli 255										
Klebsiella pneumoniae PCI 602	0.20	0.05	0.05	0.05	<0.025	0.05	-	0.20	0.10	0.20
Proteus vulgaris GN76										
Morganella morganii 1510	0.10	0.10	0.05	0.39	0.20	0.05	0.05	0.10	<0.025	0.05
Citrobacter freundii GN346	50	>50	12.5	1.56	1.56	1.56	6.25	0.78	50	25
Enterobacter cloacae G-0005	0.20	12.5	0.39	0.10	0.20	<0.025	0.05	0.20	0.10	0.10
Serratia marcescens GN629a	0.39	1.56	0.20	0.20	0.05	0.05	0.05	0.78	0.20	0.20
Pseudomonas aeruginosa M-0148	25	>50	12.5	12.5	50	6.25	12.5	1.56	3.13	1.56
P. aeruginosa IAM-1007	12.5	>50	25	6.25	12.5	1.56	3.13	0.78	1.56	0.78

a Penicillinase producer.
b Cephalosporinase producer.
excellent antibacterial activity. Methoxime analog 5b showed strong activity against Gram-positive and Gram-negative bacteria, but the activity against Pseudomonas aeruginosa was lower than that of ceftazidime (CAZ). The introduction of carboxylic acid group into the alkoxime moiety clearly increased the anti-pseudomonal activity. Compound $7 \mathbf{b}$ showed the best anti-pseudomonal activity which was comparable to that of CAZ. The 2-non-methyl analogs ($\mathbf{6 c}$ and 7c) showed lower activity against cephalosporinase producing strains including Morganella morganii and Citrobacter freundii. The introduction of a 2β-methyl group into 1 -oxacephems having substituted thiomethyl groups at $\mathrm{C}-3$ not only increased the intrinsic activity, but also the activity against β-lactamase producing strains. Among these derivatives, 7b (OCP-9-176) was selected for further evaluations as a broad-spectrum cephalosporin. ${ }^{8,9}$)

Experimental

General Method

MP's were determined with a Yamato MP-21 melting point apparatus and uncorrected. IR spectra were measured on a Hitachi $260-10$ IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Jeol JNM-GX400 (400 MHz) and a Hitachi R-90 (90 MHz) spectrometers. Mass spectra were obtained on a Hitachi M-80B mass spectrometer. Antibacterial activities (MIC) were determined in Sensitivity Disk Agar (Nissui) by the serial 2-fold dilution method after incubation at $37^{\circ} \mathrm{C}$ for 18 hours, according to the method of Japan Society of Chemotherapy.

Compound 10b

To a soln of $\mathbf{8}(10.0 \mathrm{~g}, 22.1 \mathrm{mmol})$ in ethyl (S)-lactate $(\mathbf{9 b}, 35 \mathrm{ml})$ was added trifluoromethanesulfonic acid $(0.5 \mathrm{ml})$. The mixture was stirred at room temperature for 1.5 hours and poured into dil NaHCO_{3} aq soln and extracted with EtOAc. The extract was washed with NaCl -satd aq soln and water, dried over MgSO_{4} and evaporated under reduced pressure. The residue was chromatographed on a column of silica gel eluted with toluene-EtOAc $(7: 1)$ to give an oil which was crystallized from ether $(6.68 \mathrm{~g}, 53 \%)$: MP $104 \sim 106^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-75^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1763,1738,1661 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.12\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 2.06$ and $2.23\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{CCH}_{3}\right)$, $3.97\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.40(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{CH}), 4.79(1 \mathrm{H}, \mathrm{dd}, J=6.7$ and $1.1 \mathrm{~Hz}, 3-\mathrm{H}), 5.07$ $(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, 4-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CONH}), 6.85\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.00 \sim 7.60(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Anal Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}: \quad \mathrm{C} 69.46, \mathrm{H} 6.01, \mathrm{~N} 4.91$.
Found: \quad C 69.43, H 6.01, N 4.88 .

Compound 10a

This was prepared from 8 and ethyl (R)-lactate ($9 \mathbf{a}$) as described for $\mathbf{1 0 b}$: MP $133 \sim 135^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-2.1^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$) ; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1768,1735,1668 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.19(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 2.08$ and $2.27\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{CCH}_{3}\right), 4.03(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}$, $\mathrm{CH}), 4.10\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.89(1 \mathrm{H}, \mathrm{dd}, J=6.7$ and $1.1 \mathrm{~Hz}, 3-\mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, 4-\mathrm{H})$, $6.55(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CONH}), 6.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.00 \sim 7.70(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\begin{array}{cl}\text { Anal Caled for } \mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}: & \mathrm{C} 69.46, \mathrm{H} 6.01, \mathrm{~N} 4.91 . \\ \text { Found: } & \mathrm{C} 69.53, \mathrm{H} 6.04, \mathrm{~N} 4.86 .\end{array}$

Compound 12b

To a soln of $10 \mathrm{~b}(6.10 \mathrm{~g}, 10.7 \mathrm{mmol})$ in acetone $(70 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $0.4 \mathrm{~m} \mathrm{NaOH}(30 \mathrm{ml})$. After stirring at $0^{\circ} \mathrm{C}$ for 1 hour and room temperature for a further 1 hour, acetone was removed by evaporation. The resultant aq soln was acidified to pH 2.0 and extracted with EtOAc. The extract was washed with water, dried over MgSO_{4} and evaporated under reduced pressure. The residue was crystallized from ether to give 11b ($5.3 \mathrm{~g}, 91 \%$): MP $163 \sim 166^{\circ} \mathrm{C}(\mathrm{dec})$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1765,1725,1660$.

Into a soln of $11 \mathrm{~b}(3.3 \mathrm{~g}, 6.08 \mathrm{mmol})$ in $\mathrm{MeOH}(60 \mathrm{ml}), \mathrm{O}_{3}$ gas was passed for 20 minutes at $-60^{\circ} \mathrm{C}$ and then N_{2} gas was bubbled to remove excess O_{3}. After dilution with EtOAc (180 ml), NaHSO_{3}-satd aq soln was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The organic layer was separated, dried over MgSO_{4} and evaporated under reduced pressure. The acetone soln (30 ml) of the residue was poured into 2% aq $\mathrm{MeOH}(500 \mathrm{ml})$ containing $\mathrm{NaHCO}_{3}(511 \mathrm{mg})$. After stirring for 30 minutes at $5^{\circ} \mathrm{C}$, concentration of the mixture followed by trituration with acetone gave $\mathbf{1 2 b}$ as the Na salt $(1.70 \mathrm{~g}, 93 \%)$: MP $140 \sim 142^{\circ} \mathrm{C}$ (dec); IR (Nujol) $\mathrm{cm}^{-1} 1765,1642,1605 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.18\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $3.75(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, \mathrm{CH}), 4.49(1 \mathrm{H}, \mathrm{dd}, J=7.9$ and $0.9 \mathrm{~Hz}, 3-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}, 4-\mathrm{H}), 7.10 \sim 7.90$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.68(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 9.15(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{CONH})$.

Compound 12a

This was prepared from 10 a as described for 12 b : MP $69 \sim 71^{\circ} \mathrm{C}$ (dec); IR (Nujol) $\mathrm{cm}^{-1} 1760,1650$, $1600 ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.20\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.75(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, \mathrm{CH}), 4.61$ $(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and $1.3 \mathrm{~Hz}, 3-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, 4-\mathrm{H}), 7.20 \sim 7.80(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.90(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$, $9.19(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{CONH})$.

Diphenylmethyl ($2 S, 6 R, 7 R$)-7-Benzamido-3-hydroxy-2-methyl-1-oxacephem-4-carboxylate ($\mathbf{1 5 b}$)

To a suspension of $\mathbf{1 2 b}(1.66 \mathrm{~g}, 5.53 \mathrm{mmol})$ in THF $(80 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ were added 1 m HCl in dioxane $(5.5 \mathrm{ml})$ and N, N^{\prime}-carbonyldiimidazole ($893 \mathrm{mg}, 5.51 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes and at room temperature for further 30 minutes. After cooling to $0^{\circ} \mathrm{C}$, diphenylmethylmagnesium malonate $(3.10 \mathrm{~g}, 5.53 \mathrm{mmol})$ was added. The mixture was stirred at $5^{\circ} \mathrm{C}$ overnight and evaporated under reduced pressure. The residue was dissolved in EtOAc and washed with acidic water (pH 2.0), NaHCO_{3}-satd aq soln and water successively, and dried over MgSO_{4}. Evaporation gave an oil which was chromatographed on a column of silica gel eluted with toluene - EtOAc ($1: 1$) to afford $\mathbf{1 3 b}(617 \mathrm{mg}, 23 \%)$: FD-MS $\mathrm{m} / \mathrm{z} 486$ $\left(\mathrm{M}^{+}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1775,1718,1655 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$,
3.51 and $3.77\left(2 \mathrm{H}, \mathrm{ABq}, J=15.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.38(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{CH}), 4.61(1 \mathrm{H}, \mathrm{dd}, J=6.2$ and 0.9 Hz , $3-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.44(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.83\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.20 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

To a soln of $\mathbf{1 3 b}(850 \mathrm{mg}, 1.74 \mathrm{mmol})$ in acetonitrile (70 ml) were added p-carboxybenzenesulfonyl azide ($474 \mathrm{mg}, 2.09 \mathrm{mmol}$) and triethylamine $(615 \mathrm{mg}, 6.09 \mathrm{mmol})$, and the mixture was stirred at room temperature for 2 hours. After evaporation of acetonitrile, the residue was dissolved in EtOAc and the insoluble matter was removed by filtration. The filtrate was evaporated and the residue was chromatographed on a column of silica gel eluted with toluene - EtOAc ($1: 1$) to give $\mathbf{1 4 b}(756 \mathrm{mg}, 85 \%$): FD-MS $m / z 513\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 2140,1775,1715,1658 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.61(1 \mathrm{H}, \mathrm{dd}, J=6.6$ and $1.1 \mathrm{~Hz}, 3-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, 4-\mathrm{H}), 5.18(1 \mathrm{H}$, $\mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CH}), 6.61(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh} 2), 7.10(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CONH}), 7.20 \sim 7.80$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

To a soln of $\mathbf{1 4 b}(563 \mathrm{mg}, 1.10 \mathrm{mmol})$ in EtOAc (100 ml) was added rhodium(II) acetate dimer (10 mg) under N_{2} atmosphere and the mixture was heated to $60^{\circ} \mathrm{C}$ for 30 minutes. After cooling to room temperature, the catalyst was removed by filtration and the filtrate was evaporated to give an oil. Crystallization from acetonitrile afforded $15 \mathrm{~b}(404 \mathrm{mg}, 76 \%)$: MP $175 \sim 177^{\circ} \mathrm{C}$ (dec); FD-MS $m / z 484\left(\mathrm{M}^{+}\right)$; IR ($\left.\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}$ $1775,1740,1665 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.54(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}$, $2-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{dd}, J=6.6$ and $0.7 \mathrm{~Hz}, 7-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}, 6-\mathrm{H}), 6.89(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CONH})$, $6.93\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.10 \sim 7.80(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Compound 15a

This was prepared from 12a as described for 15b: MP $111 \sim 112^{\circ} \mathrm{C}(\mathrm{dec})$; FD-MS $m / z 484\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1779,1740,1664 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.56(1 \mathrm{H}$, q, $J=6.9 \mathrm{~Hz}, 2-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{dd}, J=7.4$ and $0.6 \mathrm{~Hz}, 7-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{d}, J=0.6 \mathrm{~Hz}, 6-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{d}$, $J=7.4 \mathrm{~Hz}, \mathrm{CONH}), 6.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.10 \sim 7.80(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Diphenylmethyl ($2 S, 6 R, 7 R$)-7-Benzamido-2-methyl-1-oxacephem-4-carboxylate (17b)

To a soln of $15 \mathrm{~b}(2.80 \mathrm{~g}, 5.78 \mathrm{mmol})$ in methylene chloride $(40 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ was added a soln of tetrabutylammonium borohydride $(0.41 \mathrm{~g}, 2.85 \mathrm{mmol})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. The reaction mixture was poured into ice-water (50 ml) and adjusted to pH 3.0 . The organic layer was washed with water and dried over MgSO_{4}. Evaporation gave an oil which was crystallized from EtOAc to afford 16b ($2.20 \mathrm{~g}, 78 \%$): MP $105 \sim 108^{\circ} \mathrm{C}(\mathrm{dec})$; FD-MS $m / z 486\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1763,1724$, $1650 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.63(1 \mathrm{H}, \mathrm{dd}, J=9.2$ and $6.9 \mathrm{~Hz}, 3-\mathrm{H})$, $3.85(1 \mathrm{H}, \mathrm{dq}, J=9.2$ and $6.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 4-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dd}, J=6.7$ and 0.8 Hz , $7-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}, 6-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CONH}), 6.92(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}), 7.20 \sim 7.80(15 \mathrm{H}$, m, Ph).

To an ice-cold soln of $16 \mathrm{~b}(2.20 \mathrm{~g}, 4.52 \mathrm{mmol})$ and triethylamine ($1.13 \mathrm{~g}, 11.2 \mathrm{mmol}$) in methylene chloride (35 ml) was added methanesulfonyl chloride ($0.62 \mathrm{~g}, 5.41 \mathrm{mmol}$) and the mixture was stirred at room temperature for 3 hours. The reaction mixture was washed with NaCl -satd aq soln, NaHCO_{3}-satd aq soln and water successively, and dried over MgSO_{4}. Evaporation gave an oil which was chromatographed on a column of silica gel eluted with toluene - EtOAc (5:1) to afford $\mathbf{1 7 b}(2.07 \mathrm{~g}, 98 \%)$: FD-MS m/z 468 $\left(\mathrm{M}^{+}\right) ;$IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1781,1727,1665 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $4.50(1 \mathrm{H}, \mathrm{dq}, J=7.0$ and $1.7 \mathrm{~Hz}, 2-\mathrm{H}), 5.03(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, 6-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{dd}, J=7.9$ and 1.0 Hz , $7-\mathrm{H}), 6.21(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, 3-\mathrm{H}), 6.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.10 \sim 7.90(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

Compound 17a

This was prepared from 15a as described for 17 b : FD-MS $m / z 468\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1782$, 1725,$1664 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.69(1 \mathrm{H}, \mathrm{dq}, J=6.9$ and 3.7 Hz , $2-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}, 6-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{dd}, J=6.8$ and $0.7 \mathrm{~Hz}, 7-\mathrm{H}), 6.44(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, 3-\mathrm{H})$, $6.97\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.10 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

Diphenylmethyl ($2 S, 6 R, 7 R$)-7-Benzamido-3-methoxy-2-methyl-1-oxacephem-4-carboxylate (18b)
To a soln of $15 \mathrm{~b}(1.83 \mathrm{~g}, 3.78 \mathrm{mmol})$ in EtOAc $(20 \mathrm{ml})$ was added an ether soln of diazomethane (5 mmol) dropwise and the mixture was stirred at room temperature for 30 minutes. After addition of
acetic acid (0.1 ml) and stirring for 1 hour at room temperature, the mixture was washed with $\mathrm{NaHCO}_{3}-\mathrm{satd}$ aq soln and water, and dried over MgSO_{4}. Evaporation gave an oil which was chromatographed on a column of silica gel eluted with toluene - EtOAc (8:1) to afford $\mathbf{1 8 b}(1.77 \mathrm{~g}, 94 \%)$: FD-MS $m / z 498\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1770,1715,1663 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.57$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.47(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}, 6-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{dd}, J=7.7$ and 0.7 Hz , $7-\mathrm{H}), 6.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.10 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

Compound 18a

This was prepared from $\mathbf{1 5 a}$ as described for 18 b : FD-MS $m / z 498\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1780$, 1720,$1670 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.63(1 \mathrm{H}$, q, $J=7.0 \mathrm{~Hz}, 2-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{dd}, J=7.0$ and $0.9 \mathrm{~Hz}, 7-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}, 6-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH} \mathrm{Ph}_{2}$), $7.10 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

Diphenylmethyl (2S,6R,7R)-3-Allyloxycarbonylmethyl-7-benzamido-2-methyl-1-oxacephem-4carboxylate (19b)

To a soln of $\mathbf{1 5 b}(2.00 \mathrm{~g}, 4.12 \mathrm{mmol})$ in benzene $(60 \mathrm{ml})$ was added allyl(triphenylphosphoranylidene)acetate ($2.23 \mathrm{~g}, 6.18 \mathrm{mmol}$) and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was evaporated and the residue was purified by column chromatography on silica gel (toluene-EtOAc, $5: 1$) to afford a mixture $(2.33 \mathrm{~g})$ of $\mathbf{1 9 b}$ and its $3,3^{\prime}$-olefin isomer. The mixture was dissolved in methylene chloride (40 ml) and treated with 1,5-diazabicyclo[4.3.0]non-5-ene (255 mg , 2.06 mmol) at $0^{\circ} \mathrm{C}$ for 15 minutes. The reaction mixture was washed with acidic water (pH 2.5), NaHCO_{3}-satd aq soln and water successively, and dried over MgSO_{4}. Evaporation gave $\mathbf{1 9 b}(2.01 \mathrm{~g}, 86 \%)$: FD-MS $m / z 567\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1779,1722,1668 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.8 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 3.27$ and $3.68\left(2 \mathrm{H}, \mathrm{ABq}, J=17.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.35 \sim 4.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.50(1 \mathrm{H}$, $\mathrm{q}, J=6.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{dd}, J=7.3$ and $0.9 \mathrm{~Hz}, 7-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}, 6-\mathrm{H}), 5.05 \sim 5.30(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.50 \sim 6.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh})_{2}, 7.00(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CONH})$, $7.10 \sim 7.80(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Diphenylmethyl ($2 S, 6 R, 7 R$)-7-Benzamido-3-carboxymethyl-2-methyl-1-oxacephem-4-carboxylate (20b)

To a soln of $\mathbf{1 9 b}(2.00 \mathrm{~g}, 3.53 \mathrm{mmol})$ in methylene chloride (20 ml) were added triphenylphosphine $(37 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(82 \mathrm{mg}, 0.07 \mathrm{mmol})$ under N_{2} atmosphere. After stirring at room temperature for 10 minutes, a soln of potassium 2-ethylhexanoate ($706 \mathrm{mg}, 3.88 \mathrm{mmol}$) in EtOAc (40 ml) was added and the mixture was stirred for further 30 minutes to yield 20 b as the ppt of K salt. The ppt was partitioned between EtOAc $(20 \mathrm{ml})$ and water $(20 \mathrm{ml})$ adjusted to pH 2.0 . The organic layer was separated, dried over MgSO_{4} and evaporated to give 20b ($1.60 \mathrm{~g}, 86 \%$): FD-MS $m / z 526\left(\mathrm{M}^{+}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $\mathrm{cm}^{-1} 1780,1720,1664,{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 3.23$ and $3.61(2 \mathrm{H}$, $\left.\mathrm{ABq}, J=18 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.93(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 7-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.87$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.10 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

Diphenylmethyl (2S,6R,7R)-7-Benzamido-3-(3-chlorobenzoyloxy)methyl-2-methyl-1-oxacephem-4carboxylate (21b)

To a soln of $20 \mathrm{~b}(1.40 \mathrm{~g}, 2.66 \mathrm{mmol})$ and 3-chloroperoxybenzoic acid ($549 \mathrm{mg}, 3.19 \mathrm{mmol}$) in methylene chloride (27 ml) at $-20^{\circ} \mathrm{C}$ was added dicyclohexylcarbodiimide ($712 \mathrm{mg}, 3.46 \mathrm{mmol}$) and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hours and $5^{\circ} \mathrm{C}$ overnight. After removal of dicyclohexylurea by filtration, the filtrate was evaporated and purified by column chromatography (toluene-EtOAc, $10: 1$) to give $21 \mathrm{~b}(1.20 \mathrm{~g}, 72 \%)$: FD-MS $m / z 637\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1785,1720,1668 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.6 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 4.63(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.87$ and $5.35\left(2 \mathrm{H}, \mathrm{ABq}, J=13 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.99(1 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}, 7-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CONH}), 6.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.10 \sim 7.80(19 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph})$.

Diphenylmethyl ($2 S, 6 R, 7 R$)-7-Benzamido-2-methyl-3-methylene-1-oxacepham-4-carboxylate (22b)
To a soln of $21 \mathrm{~b}(1.10 \mathrm{~g}, 1.75 \mathrm{mmol})$ in DMF $(88 \mathrm{ml})$ and water (18 ml) were added zinc chloride
$(3.58 \mathrm{~g})$, ammonium chloride (7.50 g) and zinc powder $(9.12 \mathrm{~g})$, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 3.5 hours. The reaction mixture was poured into EtOAc (220 ml) and NaCl -satd aq soln $(220 \mathrm{ml})$. The organic layer was separated, washed with $\mathrm{NaCl}-\mathrm{satd}$ aq soln and water, and dried over MgSO_{4}. Evaporation gave a mixture of $\mathbf{2 2 b}$ and 23b which were separated by column chromatography on silica gel (toluene-EtOAc, $10: 1$) to afford 22b ($543 \mathrm{mg}, 64 \%$) and 23b ($153 \mathrm{mg}, 18 \%$). 22b: FD-MS $m / z 482\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1766,1738,1664 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 4.19$ $(1 \mathrm{H}, \mathrm{q}, J=6.1 \mathrm{~Hz}, 2-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{dd}, J=7.4$ and $1.5 \mathrm{~Hz}, 7-\mathrm{H}), 5.19$ and $5.38\left(2 \mathrm{H}\right.$, each s, $\left.=\mathrm{CH}_{2}\right), 5.32$ $(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, 6-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CONH}), 6.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.20 \sim 7.50$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. 23b: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1776,1720,1664 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.6 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.34(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.94(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 6.90\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.10 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

Compound 22a

This was prepared from 15a by the method used for 22b. 22a: FD-MS $m / z 482\left(\mathrm{M}^{+}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$ $\mathrm{cm}^{-1} 1770,1743,1670,{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 4.58(1 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}$, $2-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $1.1 \mathrm{~Hz}, 7-\mathrm{H}), 5.20$ and $5.23\left(2 \mathrm{H}\right.$, each $\left.\mathrm{s},=\mathrm{CH}_{2}\right), 5.31(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}$, $6-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.89\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CONH}), 7.20 \sim 7.80(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Diphenylmethyl ($2 S, 6 R, 7 S$)-7-Amino-2-methyl-3-methylene-1-oxacepham-4-carboxylate (27b)

To a soln of $22 \mathrm{~b}(6.11 \mathrm{~g}, 12.7 \mathrm{mmol})$ in methylene chloride $(50 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$ were added pyridine $(3.01 \mathrm{~g}, 38.1 \mathrm{mmol})$ and phosphorous pentachloride $(5.02 \mathrm{~g}, 25.4 \mathrm{mmol})$. The mixture was stirred at $5^{\circ} \mathrm{C}$ for 30 minutes and at $20^{\circ} \mathrm{C}$ for further 30 minutes. After addition of $\mathrm{MeOH}(100 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$, the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. After addition of water $(50 \mathrm{ml})$, the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and then concentrated. The concentrate was poured into a mixture of water (5 ml), EtOAc (50 ml) and diisopropyl ether (100 ml). The aq layer was adjusted to pH 3.0 and extracted with EtOAc. The extract was washed with NaHCO_{3}-satd aq soln and water, and dried over MgSO_{4}. Evaporation gave an oil which was chromatographed on a column of silica gel eluted with toluene-EtOAc (1:1) to obtain $24 \mathrm{~b}(3.67 \mathrm{~g}, 76 \%)$: FD-MS $m / z 378\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1764,1745 ;{ }^{1} \mathrm{H} \mathrm{NMR}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{\mathrm{s}}\right) \delta 1.32\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.96(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}$, $2-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.24$ and $5.30\left(2 \mathrm{H}\right.$, each $\left.\mathrm{s},=\mathrm{CH}_{2}\right), 6.82\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right)$, $7.10 \sim 7.50(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

To a soln of $\mathbf{2 4 b}(3.67 \mathrm{~g}, 9.70 \mathrm{mmol})$ in methylene chloride (50 ml) was added 3 , 5 -di-tert-butyl-4hydroxybenzaldehyde ($2.27 \mathrm{~g}, 9.70 \mathrm{mmol}$) and the mixture was refluxed for 2 hours in a Dean-Stark apparatus. The reaction mixture was evaporated to afford $\mathbf{2 5 b}$ as an oil (5.80 g): FD-MS $m / z 594\left(\mathbf{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1764,1740 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.44(18 \mathrm{H}, \mathrm{s}$, tert-butyl), $4.26(1 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.65(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}$, $6-\mathrm{H}), 5.33(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.46$ and $5.50\left(2 \mathrm{H}\right.$, each $\left.\mathrm{s},=\mathrm{CH}_{2}\right), 6.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.10 \sim 7.40(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.57(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 8.33(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N})$.

To a soln of $\mathbf{2 5 b}$ ($5.80 \mathrm{~g}, 9.75 \mathrm{mmol}$) in methylene chloride $(46 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added nickel peroxide $(3.88 \mathrm{~g})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 minutes. The reaction mixture was filtered and the filtrate was treated with a soln of tetraethylammonium borohydride ($314 \mathrm{mg}, 2.18 \mathrm{mmol}$) at $-50^{\circ} \mathrm{C}$ for 5 minutes. After addition of 6 m HCl in dioxane $(0.44 \mathrm{ml})$, the reaction mixture was washed with water and dried over MgSO_{4}. Evaporation gave 26b as an oil (5.60 g).

To a soln of $\mathbf{2 6 b}(5.60 \mathrm{~g}, 9.42 \mathrm{mmol})$ in EtOAc (87 ml) was added a soln of Girard's reagent T $(2.42 \mathrm{~g}$, $14.5 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was evaporated and the residue was dissolved in EtOAc. The soln was washed with water and dried over MgSO_{4}. Evaporation gave an oil which was purified by column chromatography on silica gel (toluene-EtOAc, $1: 1$) to obtain $\mathbf{2 7 b}\left(2.09 \mathrm{~g}, 57 \%\right.$ from 24b): MP $116 \sim 119^{\circ} \mathrm{C}(\mathrm{dec}) ;$ FD-MS $m / z 378$ $\left(\mathrm{M}^{+}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1764,1740 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.65$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.31(1 \mathrm{H}, \mathrm{q}, J=6.1 \mathrm{~Hz}, 2-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 7-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.28$ and 5.35 $\left(2 \mathrm{H}\right.$, each s, $\left.=\mathrm{CH}_{2}\right), 5.34(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 6.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.20 \sim 7.40(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Diphenylmethyl ($2 S, 6 R, 7 S$)-7-Amino-3-chloromethyl-2-methyl-1-oxacephem-4-carboxylate (30b)
To a soln of $27 \mathrm{~b}(2.09 \mathrm{~g}, 5.52 \mathrm{mmol}$) in methylene chloride (30 ml) was added $2,4,5$-trichlorophenyl formate $(1.51 \mathrm{~g}, 6.62 \mathrm{mmol})$ and the mixture was stirred at room temperature for 15 hours. The mixture was washed with NaHCO_{3}-satd aq soln and water, and dried over MgSO_{4}. Evaporation gave an oil which was purified by column chromatography on silica gel (toluene-EtOAc, 3:1) to afford $\mathbf{2 8 b}(1.81 \mathrm{~g}, 81 \%)$: FD-MS $m / z 407\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3420,1780,1740,1690 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.33(1 \mathrm{H}, \mathrm{q}, J=6.1 \mathrm{~Hz}, 2-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.30$ and $5.38\left(2 \mathrm{H}\right.$, each s, $\left.=\mathrm{CH}_{2}\right)$, $5.44(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, 6-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{dd}, J=9.8$ and $3.3 \mathrm{~Hz}, 7-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{CONH}), 6.85$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.20 \sim 7.40(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{HCO})$.

To a soln of $\mathbf{2 8 b}(600 \mathrm{mg}, 1.48 \mathrm{mmol})$ in methylene chloride (16 ml) was added phenylselenyl chloride ($566 \mathrm{mg}, 2.96 \mathrm{mmol}$) and the mixture was stirred at room temperature for 1 hour. After addition of 40% peracetic acid (639 mg), the mixture was stirred at room temperature for 30 minutes. The reaction mixture was washed with NaHCO_{3}-satd aq soln, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$-satd aq soln and water successively, and dried over MgSO_{4}. Evaporation gave an oil which was purified by column chromatography on silica gel (toluene-EtOAc, 3:1) to afford 29b ($502 \mathrm{mg}, 77 \%$): FD-MS m/z $440\left(\mathrm{M}^{+}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1795,1720$, $1690 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.11$ and $5.16(2 \mathrm{H}, \mathrm{ABq}, J=12.5 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{H}_{2}\right), 4.78(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, 6-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{dd}, J=9.8$ and $3.7 \mathrm{~Hz}, 7-\mathrm{H})$, $6.28(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{CONH}), 6.90\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.10 \sim 7.50(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.25(1 \mathrm{H}, \mathrm{s}, \mathrm{HCO})$.

To a soln of 29 b ($400 \mathrm{mg}, 0.91 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{ml})$ was added 6 M HCl in dioxane $(0.46 \mathrm{ml})$ and the mixture was stirred at room temperature for 30 minutes. Evaporation followed by trituration with ether gave $\mathbf{3 0 b}$ as the hydrochloride (400 mg , quantitative): FD-MS $m / z 413\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1783$, $1720 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.08$ and $5.13(2 \mathrm{H}$, $\left.\mathrm{ABq}, J=12.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}, 7-\mathrm{H}), 4.76(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$, $6-\mathrm{H}), 6.88\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.10 \sim 7.50(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
($6 R, 7 S$)-7-[(Z)-2-(2-Aminothiazol-4-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-2(S)-methyl-3-[(1-methylpyridinium-4-yl)thiomethyl]-1-oxacephem-4-carboxylate (7b)

To a soln of (Z)-2-(2-tritylaminothiazol-4-yl)-2-[1-methyl-1-(diphenylmethoxycarbonyl)ethoxyimino]acetic acid ${ }^{17)}(1.28 \mathrm{~g}, 1.88 \mathrm{mmol})$ and $30 \mathrm{~b}(770 \mathrm{mg}, 1.71 \mathrm{mmol})$ in methylene chloride $(20 \mathrm{ml})$ were added pyridine ($675 \mathrm{mg}, 8.55 \mathrm{mmol}$) and phosphoryl chloride $(366 \mathrm{mg}, 2.39 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The mixture was washed with NaCl -satd aq soln and water, and dried over MgSO_{4}. Evaporation gave an oil which was purified by column chromatography on silica gel (toluene-EtOAc, $5: 1$) to afford an amide $(1.31 \mathrm{~g})$.

To a soln of the amide ($1.31 \mathrm{~g}, 1.22 \mathrm{mmol}$) in DMF (13 ml) were added $\mathrm{NaI}(360 \mathrm{mg}, 2.44 \mathrm{mmol})$ and 1 -methylpyrid-4-thione ($163 \mathrm{mg}, 1.30 \mathrm{mmol}$) and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was diluted with a mixture of $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ and $\mathrm{EtOAc}(10 \mathrm{ml})$, washed with water, and dried over MgSO_{4}. Evaporation gave an oil (1.45 g).

The oil was dissolved in anisole (3 ml) and TFA $(14 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 minutes, diisopropyl ether was added to the mixture and the resulting ppt was collected by filtration. The ppt (825 mg) was dissolved in water $(8.0 \mathrm{ml})$ containing $\mathrm{NaHCO}_{3}(340 \mathrm{mg}, 4.04 \mathrm{mmol})$ and purified by column chromatography on Diaion HP-20 (83 ml). After washing the column with water, elution with $50 \% \mathrm{aq}$ $\mathrm{MeOH}(300 \mathrm{ml})$ gave $\mathbf{7 b}$ as the sodium salt ($520 \mathrm{mg}, 50 \%$ from $\mathbf{3 0 b}$): MP $175 \sim 180^{\circ} \mathrm{C}(\mathrm{dec})$; $[\alpha]_{\mathrm{D}}^{25}-48.7^{\circ}$ (c $1.88, \mathrm{H}_{2} \mathrm{O}$); IR (KBr) $\mathrm{cm}^{-1} 1775,1730,1650 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.45$ and $1.47(6 \mathrm{H}$, each s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.49\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.80$ and $4.80\left(2 \mathrm{H}, \mathrm{ABq}, J=17.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $4.73(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, 2-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, 6-\mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{s}$, thiazole), 7.70 and $8.40(4 \mathrm{H}, \mathrm{ABq}, J=6.2 \mathrm{~Hz}$, pyridine).
($6 R, 7 S$)-7-[(Z)-2-(2-Aminothiazol-4-yl)-2-(methoxyimino) acetamido $]-2(S)$-methyl-3-(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)thiomethyl-1-oxacephem-4-carboxylate (4b)

This was prepared from 30b, (Z)-2-(2-tritylaminothiazol-4-yl)-2-(methoxyimino)acetic acid and 1,2,5,6-tetrahydro-3-mercapto-2-methyl-1,2,4-triazine-5,6-dione, as described for $7 \mathbf{7 b} .4 b$ (2 Na salt): IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1765,1600,{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.45\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.96$ and $4.47\left(2 \mathrm{H}, \mathrm{ABq}, J=13.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.85(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.25(1 \mathrm{H}$,
$\mathrm{d}, J=3.4 \mathrm{~Hz}, 6-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}, 7-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{s}$, thiazole $)$.
($6 R, 7 S$)-7-[(Z)-2-(2-Aminothiazol-4-yl)-2-(methoxyimino) acetamido]-2(S)-methyl-3-[(1-methylpyridinium-4-yl)thiomethyl]-1-oxacephem-4-carboxylate (5b)

This was prepared from 30b, (Z)-2-(2-tritylaminothiazol-4-yl)-2-(methoxyimino)acetic acid and 1-methylpyrid-4-thione, as described for $\mathbf{7 b} .5 \mathrm{~b}$ (Na salt): IR (KBr) $\mathrm{cm}^{-1} 1770,1659$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 1.48\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 3.89$ and $4.83\left(2 \mathrm{H}, \mathrm{ABq}, J=14 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.76(1 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}, 2-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 5.51(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$, $7-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{s}$, thiazole), 7.70 and $8.40(4 \mathrm{H}, \mathrm{ABq}, J=6.6 \mathrm{~Hz}$, pyridine $)$.
($6 R, 7 S)-7-[(Z)-2-(2$-Aminothiazol-4-yl)-2-(carboxymethoxyimino) acetamido $]-2(S)$ -methyl-3-[(1-methylpyridinium-4-yl)thiomethyl]-1-oxacephem-4-carboxylate (6b)

This was prepared from 30b, (Z)-2-(2-tritylaminothiazol-4-yl)-2-[(diphenylmethoxycarbonyl)methoxyimino]acetic acid and 1-methylpyrid-4-thione, as described for $\mathbf{7 b}$. $\mathbf{6 b}$ (Na salt): IR (KBr) $\mathrm{cm}^{-1} 1763$, $1660 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.46\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .3 .89$ and $4.83(2 \mathrm{H}, \mathrm{ABq}, J=14.1 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{H}_{2}\right), 4.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.17(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$, $7-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{s}$, thiazole), 7.70 and $8.39(4 \mathrm{H}, \mathrm{ABq}, J=8.4 \mathrm{~Hz}$, pyridine).

Compound 33b

Into a soln of $10 \mathrm{~b}(5.50 \mathrm{~g}, 9.65 \mathrm{mmol})$ in methylene chloride $(150 \mathrm{ml})$ was passed O_{3} gas at $-60^{\circ} \mathrm{C}$ for 20 minutes and then N_{2} gas was bubbled into the soln to remove excess O_{3}. Acetic acid (11 ml) and zinc powder $(10 \mathrm{~g})$ were added to the soln at $-60^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The mixture was filtered and the filtrate was washed with NaHCO_{3}-satd aq soln and water, and dried over MgSO_{4}. Evaporation gave 31b (4.73g): IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1771,1727,1660 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.17$ and $1.20\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.20$ and $1.47\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CHCH}_{3}\right), 4.03$ and $4.12\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right), 4.32$ and $4.43(1 \mathrm{H}, \mathrm{q}, \mathrm{CH}), 4.75$ and $4.80(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 4.90$ and $4.99(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}), 5.05$ and $5.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH})$, 6.87 and $6.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.10 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

To an ice-cooled soln of $31 \mathrm{~b}(4.58 \mathrm{~g}, 8.39 \mathrm{mmol})$ and pyridine $(1.38 \mathrm{~g}, 17.4 \mathrm{mmol})$ in methylene chloride $(50 \mathrm{ml})$ was added thionyl chloride $(2.07 \mathrm{~g}, 17.4 \mathrm{mmol})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was poured into ice-water and extracted with methylene chloride. The extract was washed with water and dried over MgSO_{4}. Evaporation gave 32b (4.50 g): IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1785,1738$, $1667 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.36$ and $\left.1.47(3 \mathrm{H}, \mathrm{d}, \mathrm{CHCH})_{3}\right), 4.12(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{CH}_{2}\right), 4.43$ and $4.52(1 \mathrm{H}, \mathrm{q}, \mathrm{CH}), 4.72$ and $4.73(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 5.32$ and $5.38(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}), 6.17$ and 6.22 $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}), 6.88$ and $6.93\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.10 \sim 7.89(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

To a soln of $32 \mathrm{~b}(4.50 \mathrm{~g}, 7.97 \mathrm{mmol})$ and triethylamine $(0.97 \mathrm{~g}, 9.56 \mathrm{mmol})$ in chloroform (50 ml) was added triphenylphosphine $(4.17 \mathrm{~g}, 15.9 \mathrm{mmol})$ and the mixture was stirred at room temperature for 15 hours. The reaction mixture was washed with water, NaHCO_{3}-satd aq soln and water successively, and dried over MgSO_{4}. Evaporation gave an oil which was purified by column chromatography on silica gel (toluene-EtOAc, 3:1) to afford 33b ($4.65 \mathrm{~g}, 61 \%$ from 10b): FD-MS $m / z 790\left(\mathrm{M}^{+}\right)$; IR ($\left.\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}$ 1760, 1740, 1650.

Compound 36b

To a soln of $33 \mathrm{~b}(4.50 \mathrm{~g}, 5.70 \mathrm{mmol}$) in 30% aq acetone (70 ml) was added 1 m NaOH (5.7 ml) and the mixture was stirred at room temperature for 2 hours. After addition of $1 \mathrm{~m} \mathrm{NaOH}(2.8 \mathrm{ml})$, the mixture was stirred for further 30 minutes, and then adjusted to pH 3.0 . After removal of acetone by evaporation, the concentrate was extracted with EtOAc and the extract was dried over MgSO_{4}. Evaporation gave an oil which was crystallized from MeOH to afford $\mathbf{3 4 b}\left(3.60 \mathrm{~g}, 83 \%\right.$): MP $139 \sim 141^{\circ} \mathrm{C}$ (dec); FD-MS m / z $763\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1765,1730,1658$.

To a soln of $\mathbf{3 4 b}(3.29 \mathrm{~g}, 4.32 \mathrm{mmol})$ and 4-methylmorphorine $(0.52 \mathrm{~g}, 5.18 \mathrm{mmol})$ in methylene chloride $(40 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ was added ethyl chloroformate $(0.51 \mathrm{~g}, 4.75 \mathrm{mmol})$ and the mixture was stirred for 30 minutes. An ether soln of diazomethane (6 mmol) was added to the soln dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. After addition of $\mathrm{AcOH}(0.23 \mathrm{ml})$, the reaction mixture was washed with water, NaHCO_{3}-satd aq soln and water successively, and dried over MgSO_{4}. Evaporation gave an oil
which was purified by column chromatography on silica gel (toluene - EtOAc, 3:1) to afford $\mathbf{3 5 b}(2.91 \mathrm{~g}$, $86 \%)$: FD-MS $m / z 786\left(\mathrm{M}^{+}\right) ;$IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 2110,1765,1730,1657$.

To a soln of $\mathbf{3 5 b}(1.45 \mathrm{~g}, 1.84 \mathrm{mmol})$ in benzene $(30 \mathrm{ml})$ were added 5 -mercapto-1-methyl- 1 H -tetrazole ($428 \mathrm{mg}, 3.69 \mathrm{mmol}$) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(10 \mathrm{mg})$, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1.5 hours under N_{2} atmosphere. The reaction mixture was washed with NaHCO_{3}-satd aq soln, and dried over MgSO_{4}. Evaporation gave an oil which was purified by column chromatography on silica gel (toluene - EtOAc, 2:1) to afford 36b ($970 \mathrm{mg}, 60 \%$): FD-MS $m / z 875\left(\mathrm{M}^{+}\right)$; IR (CHCl_{3}) $\mathrm{cm}^{-1} 1765,1735$, 1658.

Compound 37b

To an ice-cooled soln of $\mathbf{3 5 b}(2.91 \mathrm{~g}, 3.69 \mathrm{mmol})$ in methylene chloride $(40 \mathrm{ml})$ was added 6 m HCl in dioxane $(1.23 \mathrm{ml})$ dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was washed with NaHCO_{3}-satd aq soln and water, and dried over MgSO_{4}. Evaporation gave 37b (2.73 g , 93%): FD-MS $m / z 786\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1763,1735,1658$.

Diphenylmethyl ($2 S, 6 R, 7 R$)-7-Benzamido-2-methyl-3-(1-methyl-1 H-tetrazol-5-yl)thiomethyl-1-oxa-cephem-4-carboxylate ($\mathbf{3 8 b}$)

A soln of $36 \mathrm{~b}(2.70 \mathrm{~g}, 3.09 \mathrm{mmol})$ and hydroquinone $(0.18 \mathrm{~g})$ in toluene $(270 \mathrm{ml})$ was refluxed for 20 hours under N_{2} atmosphere. The reaction mixture was washed with NaHCO_{3}-satd aq soln, and dried over MgSO_{4}. After evaporation, 38b was crystallized from EtOAc by addition of DMF (0.48 ml) as the 1:1 DMF solvate ($1.67 \mathrm{~g}, 81 \%$): MP $157 \sim 158^{\circ} \mathrm{C}(\mathrm{dec}) ;$ FD-MS $m / z 597\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1782$, 1720,$1670 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.06$ and $4.67\left(2 \mathrm{H}, \mathrm{ABq}, J=13.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.81(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and $1.0 \mathrm{~Hz}, 7-\mathrm{H})$, $5.12(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.94\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.20 \sim 7.80(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CONH})$.

Compounds 35a, 36a, 37a and 38a

These compounds were obtained from 10a by the similar method described above.
35a: FD-MS $m / z 786\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 2110$, 1765, 1655. 36a: FD-MS $m / z 875\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1765,1730$, 1655. 37a: FD-MS $m / z 796\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1765,1740,1650$. 38a: MP $155 \sim 158^{\circ} \mathrm{C}$ (dec); FD-MS m/z $596\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1788,1718,1670 ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.52\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.21$ and $4.39\left(2 \mathrm{H}, \mathrm{ABq}, J=13.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right)$, $4.82(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and $1.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 2-\mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.95$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.05(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CONH}), 7.20 \sim 7.80(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Diphenylmethyl ($2 S, 6 R, 7 S$)-7-Amino-2-methyl-3-(1-methyl-1 H-tetrazol-5-yl)thiomethyl-1-oxa-cephem-4-carboxylate ($\mathbf{4 0 b}$)

Compound $\mathbf{4 0 b}$ was prepared from $\mathbf{3 8 b}$ in 26% yield by the method used for $\mathbf{2 7 b}$ from $\mathbf{2 2 b}$: MP $149 \sim 151^{\circ} \mathrm{C}(\mathrm{dec}) ;$ IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1796,1716 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$, $\left.2-\mathrm{CH}_{3}\right), 2.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.02$ and $4.67\left(2 \mathrm{H}, \mathrm{ABq}, J=14 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.98(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh} 2), 7.10 \sim 7.60$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).
($6 R, 7 S)-7-[(Z)-2-(2-A m i n o t h i a z o l-4-y l)-2-(m e t h o x y i m i n o) a c e t a m i d o]-2(S)-m e t h y l-3-$ (1-methyl-1 H-tetrazol-5-yl)thiomethyl-1-oxacephem-4-carboxylic Acid (3b)

To a soln of (Z)-2-(2-tritylaminothiazol-4-yl)-2-(methoxyimino)acetic acid ($173 \mathrm{mg}, 0.39 \mathrm{mmol}$) and 40 b ($160 \mathrm{mg}, 0.325 \mathrm{mmol}$) in methylene chloride (6 ml) at $-20^{\circ} \mathrm{C}$ were added pyridine ($103 \mathrm{mg}, 1.30 \mathrm{mmol}$) and phosphoryl chloride ($70 \mathrm{mg}, 0.455 \mathrm{mmol}$) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was diluted with $\mathrm{EtOAc}(12 \mathrm{ml})$ and washed with NaCl -satd aq soln, NaHCO_{3}-satd aq soln and water successively, and dried over MgSO_{4}. After evaporation, the residue was purified by column chromatography on silica gel (toluene - EtOAc, $5: 1$) to afford an amide ($241 \mathrm{mg}, 81 \%$): IR (CHCl_{3}) cm^{-1} $1795,1717,1684 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.48\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.07$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03$ and $4.72\left(2 \mathrm{H}, \mathrm{ABq}, J=14 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.87(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{d}$, $J=3.8 \mathrm{~Hz}, 6-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{dd}, J=8.9$ and $3.8 \mathrm{~Hz}, 7-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{s}$, thiazole $), 6.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 6.94$
$(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{CONH}), 7.10 \sim 7.80(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
To a soln of the amide ($230 \mathrm{mg}, 0.25 \mathrm{mmol}$) in anisole $(0.5 \mathrm{ml})$ was added TFA (2.5 ml) dropwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 30 minutes. After addition of diisopropyl ether, the resulting ppt was collected by filtration and washed with diisopropyl ether to give $\mathbf{3 b}$ as the TFA salt ($93 \mathrm{mg}, 80 \%$): IR (Nujol) $\mathrm{cm}^{-1} 1787,1670 ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.40\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 3.86(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.05$ and $4.67\left(2 \mathrm{H}, \mathrm{ABq}, J=13 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.78(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 5.14$ $(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}, 6-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{dd}, J=8.7 \mathrm{and} 3.8 \mathrm{~Hz}, 7-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{s}$, thiazole $), 9.35(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, CONH).

Compounds 40a and 3a

These compounds were obtained from 38a by the method described for $\mathbf{4 0 b}$ and $\mathbf{3 b}$.
40a: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1785,1720 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.57\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$, $2.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.23$ and $4.46\left(2 \mathrm{H}, \mathrm{ABq}, J=13 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$, $7-\mathrm{H}), 4.86(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, 2-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}, 6-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh} 2), 7.10 \sim 7.60(10 \mathrm{H}$, m, Ph). 3a (TFA salt): IR (Nujol) $\mathrm{cm}^{-1} 1790,1670 ;{ }^{1} \mathrm{H}$ NMR (90 MHz , DMSO- d_{6}) $\delta 1.51(3 \mathrm{H}$, d, $\left.J=6.9 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.07$ and $4.42\left(2 \mathrm{H}, \mathrm{ABq}, J=13.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right)$, $4.87(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 2-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, 6-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $3.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.76$ ($1 \mathrm{H}, \mathrm{s}$, thiazole), $9.40(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{CONH})$.

Compound 22b from 38b

To a mixture of $\mathbf{3 8 b}(24.0 \mathrm{~g}, 40.0 \mathrm{mmol})$, ammonium chloride $(24.0 \mathrm{~g}, 417 \mathrm{mmol})$ and thiourea $(12.0 \mathrm{~g}$, $157 \mathrm{mmol})$ in DMF was added zinc powder $(26.4 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour and then filtered. The filtrate was poured into NaCl -satd aq soln $(480 \mathrm{ml})$ and extracted with EtOAc. The extract was washed with acidic water (pH 2.0) and water, and dried over MgSO_{4}. Evaporation gave an oil which was purified by column chromatography on silica gel (toluene-EtOAc, 7:1) to afford $\mathbf{2 2 b}(17.7 \mathrm{~g}, 92 \%)$.

Diphenylmethyl ($2 S, 6 R, 7 S$)-7-Amino-2-methyl-3-methoxy-1-oxacephem-4-carboxylate (42b)
This was prepared from 18b by the similar method for 27b from 22b: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1782,1717$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, 7-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, 6-\mathrm{H}), 6.93\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right)$, $7.10 \sim 7.60(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$(6 R, 7 S)-7-[(Z)-2-(2-A m i n o t h i a z o l-4-y l)-2-(m e t h o x y i m i n o) a c e t a m i d o]-3-m e t h o x y-2(S)-$ methyl-3-methoxy-1-oxacephem-4-carboxylic acid (2b)

Compound $\mathbf{2 b}$ was obtained as the TFA salt from $\mathbf{4 2 b}$ in 49% yield by the method used for $\mathbf{3 b}$ from 40b: IR (Nujol) $\mathrm{cm}^{-1} 1780,1670 ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.33\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.75$ $\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}\right.$, oxime- $\left.\mathrm{CH}_{3}\right), 4.66(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 5.21(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, 6-\mathrm{H})$, $5.43(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $3.7 \mathrm{~Hz}, 7-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{s}$, thiazole $), 9.35(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{CONH})$.

Compounds 42a and 2a
These compounds were obtained from $\mathbf{1 8 a}$ by the similar method described for $\mathbf{4 2 b}$ and $\mathbf{2 b}$.
42a: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1780,1720 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.80$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCH}_{3}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}, 7-\mathrm{H}), 4.64(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 2-\mathrm{H}), 5.14(1 \mathrm{H}$, $\mathrm{d}, J=3.8 \mathrm{~Hz}, 6-\mathrm{H}), 6.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.10 \sim 7.60(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) . \mathbf{2 a}$ (TFA salt): IR (Nujol) $\mathrm{cm}^{-1} 1785$, $1670 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.43\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCH}_{3}\right), 3.85(3 \mathrm{H}, \mathrm{s}$, oxime- CH_{3}) $, 4.77(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 2-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, 6-\mathrm{H}), 5.48(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 4.2 Hz , $7-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{s}$, thiazole $), 9.33(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CONH})$.

Compounds 41a, 41b, 1a and 1b

These compounds were obtained from $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$, respectively, as described for $\mathbf{4 2 b}$ and $\mathbf{2 b}$.
41a: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1784,1724 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.74$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.53(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.70(1 \mathrm{H}, \mathrm{dq}, J=7.0$ and $3.5 \mathrm{~Hz}, 2-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, $6-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, 3-\mathrm{H}), 6.96\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 7.10 \sim 7.60(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .41 \mathrm{~b}: \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}$

1785,$1712 ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{d}$, $J=4.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{dq}, J=6.9$ and $1.8 \mathrm{~Hz}, 2-\mathrm{H}), 5.03(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.35(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}$, $3-\mathrm{H}), 6.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right), 7.10 \sim 7.60(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .1 \mathrm{a}$ (TFA salt): IR (Nujol) $\mathrm{cm}^{-1} 1780,1660 ;{ }^{1} \mathrm{H}$ NMR ($\left.90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.33\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.72(1 \mathrm{H}, \mathrm{dq}, J=7.2$ and $3.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, 6-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $3.5 \mathrm{~Hz}, 7-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{d}$, $J=3.6 \mathrm{~Hz}, 3-\mathrm{H}), 6.78\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole), $9.34(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{CONH}) .1 \mathrm{~b}$ (TFA salt): IR (Nujol) cm^{-1} 1780,$1665 ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.32\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.65$ $(1 \mathrm{H}, \mathrm{dq}, J=7.0$ and $1.8 \mathrm{~Hz}, 2-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, 6-\mathrm{H}), 5.46(1 \mathrm{H}, \mathrm{dd}, J=7.9$ and $3.9 \mathrm{~Hz}, 7-\mathrm{H})$, $6.34(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, 3-\mathrm{H}), 6.86(1 \mathrm{H}, \mathrm{s}$, thiazole $), 9.37(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{CONH})$.

References

1) Cama, L. D. \& B. G. Christensen: Total synthesis of β-lactam antibiotics. VII. Total synthesis of (\pm)-1-oxacephalothin. J. Am. Chem. Soc. 96: 7582~7584, 1974
2) Firestone, R. A.; J. L. Fahey, N. S. Maciejewicz, G. S. Patel \& B. G. Christensen: Total syntheses of (\pm)-1-carbacefoxitin and -cefamandole and (\pm)-1-oxacefamandole. J. Med. Chem. 20: 551~556, 1977
3) Narisada, M.; T. Yoshida, H. Onoue, M. Ohtani, T. Okada \& W. Nagata: Synthesis and antibacterial activity of 1-oxacephem derivatives. J. Antibiotics 35: 463~482, 1982
4) Nagata, W.; M. Narisada \& T. Yoshida: 1. Partial synthesis of nuclear analogs of cephalosporins. In Chemistry and Biology of β-Lactam Antibiotics, Vol. 2. Nontraditional β-Lactam Antibiotics. Eds., R. B. Morin \& M. Gorman, pp. $1 \sim 98$, Academic Press, 1982
5) Takaya, T.; Z. Tozuka, H. Takasugi, T. Kamiya \& H. Nakano: Studies on β-lactam antibiotics. V. Effect on antimicrobial activity of 2- and/or 3-methyl group(s) in a cephem nucleus. J. Antibiotics 35: 585~588, 1982
6) Mizokami, N.; H. Fukase, S. Horii \& Y. Kuwada: Synthesis of 2α-methyl- and 2β-methyl-3-(substituted methyl)cephalosporins, and 2,3-diexomethylenecepham. Chem. Pharm. Bull. 31: 1482~1493, 1983
7) Shibahara, S.; T. Okonogi, Y. Murai, T. Kudo, T. Yoshida, S. Kondo \& B. G. Christensen: Synthesis of a novel 2β-methyl-1-oxacephalosporin, OCP-9-176. J. Antibiotics 41: 1154~1157, 1988
8) Weissberger, B.; G. K. Abruzzo, R. A. Fromtling, M. E. Valiant, D. L. Shungu \& H. H. Gadebusch: L-656,575 (OPC-9-176): A novel oxacephem. In vitro activity against aerobic and anaerobic clinical bacterial isolates. J. Antibiotics 41: 1130~1136, 1988
9) Gllfillan, E. C.; B. A. Pelak, R. A. Fromtling, J. Bland, S. Hadley \& H. H. Gadebusch: L-656,575 (OCP-9-176): A novel oxacephem. Pharmacokinetics and experimental chemotherapy. J. Antibiotics 41: 1137~1141, 1988
10) Habich, D.: Synthesis of the chiral synthetic building block ($1 R, 5 S$)-3-phenyl-4-oxa-2,6-diazabicyclo[3.2.0]hept-2-en-7-one from 6-aminopenicillanic acid. Angew. Chem. Int. Ed. Engl. 22: 711, 1983
11) Okonogi, T.; S. Shibahara, Y. Murai, S. Inouye, S. Kondo \& B. G. Christensen: Novel 2-methyl-1oxacephalosporins 1. Synthesis of 2-methyl-3-nor-1-oxacephem nucleus. Heterocycles, to submitted
12) Corbett, D. F. \& R. J. Stoodley: Studies related to penicillins. Part XII. Reactions of ($1 R, 5 S$)-3-benzyl-7-(2-methylprop-1-enyl)-2-oxa-4,7-diazabicyclo[3.2.0]hept-3-en-6-one with alcohols and with acids. J. Chem. Soc. Perkin Trans. I 1974: 185~188, 1974
13) Cooper, R. D. G. \& F. L. José: Structural studies on penicillin derivatives. IX. Synthesis of thiazolidine -azetidinones. J. Am. Chem. Soc. 94: 1021 ~ 1022, 1972
14) Brooks, D. W.; L. D. Lu \& S. Masamune: C-Acylation under virtually neutral conditions. Angew. Chem. Int. Ed. Engl. 18: 72~74, 1979
15) Ratcliffe, R. W.; T. N. Salzmann \& B. G. Christensen: A novel synthesis of the carbapen-2-em ring system. Tetrahedron Lett. 21: 31~34, 1980
 [$10-{ }^{14} \mathrm{C}, 6 \alpha_{-}{ }^{3} \mathrm{H}$]penicillin N. Biochem. J. 186: 881~887, 1980
16) Shibahara, S.; T. Okonogi, T. Yoshida, Y. Murai, T. Kudo, S. Inouye \& S. Kondo: A new aminothiazolylcephalosporin having 1-carboxyethoxyimino group, ME1228. J. Antibiotics 43: 62~69, 1990
17) Okonogi, T.; S. Shibahara, Y. Murai, S. Inouye, S. Kondo \& B. G. Christensen: Novel 2-methyl-1-oxacephalosporins 2. Synthesis of 3-substituted 2-methyl-1-oxacephem nucleus. Heterocycles, to submitted
18) Narisada, M.; H. Onoue \& W. Nagata: Synthetic studies on β-lactam antibiotics. Part 5. A synthesis of 7β-acylamino-3-methyl-1-oxadethia-3-cephem-4-carboxylic acids. Heterocycles 7: 839~849, 1977
19) Okonogi, T.; S. Shibahara, Y. Murai, S. Inouye, S. Kondo \& B. G. Christensen: Novel 2-methyl-1-oxacephlosporins 3. Synthesis of 3-chloromethyl derivatives. Heterocycles, to submitted
20) Hagiwara, D.; H. Takeno, M. Aratani, K. Hemmi \& M. Hashmoto: Synthesis and antibacterial activity of new 1-oxa-1-dethiacephalosporins. J. Med. Chem. 23: 1108~1113, 1980

[^0]: ${ }^{\dagger \dagger \dagger}$ In this paper, "1-oxacephem" is used for nomenclature of 1-oxa-1-dethia-3-cephem compounds.

